
Zoea – Composable Inductive Programming Without 
Limits

Edward McDaid FBCS
Chief Technology Officer

Zoea Ltd

Sarah McDaid PhD
Visiting Senior Research Fellow
London South Bank University

Abstract

Automatic  generation  of  software  from  some  form  of  specification  has  been  a  long  standing  goal  of  
computer science research. To date successful results have been reported for the production of relatively  
small programs. This paper presents Zoea which is a simple programming language that allows software to  
be generated from a specification format that closely resembles a set of automated functional tests. Zoea  
incorporates  a  number  of  advances  that  enable  it  to  generate  software  that  is  large  enough  to  have  
commercial value. Zoea also allows programs to be composed to form still larger programs. As a result Zoea  
can be used to produce software of any size and complexity. An overview of the core Zoea language is  
provided together with a high level description of the symbolic AI based Zoea compiler.

1. Introduction

Automation  has  been  a  relentless  force  in  software 
development throughout most of its history. This drive 
has  accelerated  in  the  last  decade  or  so  with 
approaches including test automation [1], continuous 
integration  [2]  and  continuous  deployment  [3] 
becoming  common.  The  benefits  of  automation  are 
often expressed in terms of improved quality, greater 
development  velocity  and  reduced  time  to  market. 
From the business perspective many of these benefits 
translate into lower cost and greater efficiency.

Yet  software  development  remains  an  expensive 
undertaking.  For  most  organisations  the  greatest 
component  in  software  development  cost  is  direct 
labour. This is mainly due to the fact that coding is a 
labour  intensive  activity.  It  is  also  partly  due  to  a 
significant  and increasing global  shortage of  skilled 
developers. As a result  any degree of automation in 
the  coding  activities  of  the  software  development 
lifecycle could have significant benefits.

At  the  same time  only  around  0.3% of  the  worlds 
population  are  software  developers  [4].  Given  the 
significant  and  growing  importance  of  software  in 
everyday life  and business  this  means  that  the  vast 
majority  of  people  are  effectively  disenfranchised, 
limited to being consumers of software provided by a 
small minority.

Many people think the world would be a better place 
if  more people  could create  their  own software.  To 
this end there have been calls to teach programming 
more  widely  [5].  However,  all  mainstream 

programming languages  are  complex  and require 
significant  time  and  effort  to  learn.  In  addition, 
technology  changes  rapidly  so  ongoing  effort 
would  be  required  to  maintain  any  skills  so 
acquired.  As  a  result  it  is  difficult  to  imagine  a 
significant  percentage  of  people  becoming 
software  developers  in  the  current  sense  of  the 
term.  An  alternative  strategy might  be  to  enable 
people  to  some  how  generate  the  software  they 
want.

The automatic generation of software from some 
kind  of  specification  has  been  a  long  standing 
objective  of  computer  science  research.  While 
significant and promising progress has been made 
in this field it has proved difficult to move beyond 
the generation of relatively small programs.

This paper describes a new inductive programming 
language  called  Zoea.  Zoea  is  a  very  simple 
language  that  resembles  set  of  automated  test 
cases. Despite its simplicity Zoea is intended to be 
a general purpose language that can also be used to 
generate programs of any size.

2. Related work

Automatic  Programming  is  a  long  standing  if 
somewhat  archaic  umbrella  term  used  to 
characterise a wide variety of code generation and 
transformation approaches [6]. In these approaches 
the input is usually either a program or a model of 
some  form  and  the  output  is  a  modified  or 
generated  program.  In  terms  of  making software 

1



development  easier  approaches involving models  as 
input  are more attractive than those involving other 
programs.

Program  synthesis  is  a  sub-field  of  automatic 
programming in  which  the  input  is  a  model  in  the 
form of a mathematical specification of the required 
program  [7].  In  common  with  formal  methods, 
programs generated through program synthesis  may 
also have the benefit of being verified as correct with 
respect to the model. While program synthesis may be 
useful  for  the  development  of  mission  critical 
applications it is less obviously appropriate for casual 
end user programming in its current form.

Inductive  programming  is  another  sub-field  of 
automatic  programming  in  which  the  specification 
takes  the  form of  a  set  of  constraints,  input-output 
examples  and/or  traces  of  program  data  during 
execution [8]. Interest in inductive programming has 
waxed and waned several times over the decades as it 
was  applied  in  turn  to  different  programming 
paradigms [9,10,11].  Inductive programming has  an 
attractive operating model as it can require little or no 
end user programming knowledge. After nearly fifty 
years of research it is finally starting to make its way 
into mainstream IT products [12] although it  is still 
capable of producing only relatively small programs.

In  parallel  with  the  above  the  domain  of  software 
development has been a natural subject for artificial 
intelligence  research  aimed  at  producing  tools  that 
codify software development  knowledge [13].  More 
recently there has been significant interest in applying 
deep learning to enhance software development tools 
[14,15].  Keyword  programming  is  an  interesting 
approach that translates an unordered set of keyword 
symbols  supplied  by  the  user  into  one  or  more 
candidate program fragments [16].  This approach is 
based  on  prior  extraction  of  code  fragments  and 
associated  keywords  from  a  corpus  of  existing 
software.

Visual  programming is  another broad area aimed at 
making  software  development  more  accessible 
through the use of diagrams [17]. The key challenge 
in this area remains that of formulating notations that 
are  adequate  for  software  specification  without  just 
using diagrams as a literal visual representation of an 
equivalent text based program [18]. 

Within  the  software  industry  there  are  many 
technologies  that  either  automate  the  production  of 
code  or  obviate  the  need  for  code  that  would 
otherwise  be  required.  Such  technologies  usually 
operate  within  a  single  application  tier  (e.g.  user 
interface  or  database)  or  across  a  specific  interface 
between  components.  Generation  of  complete 

programs  that  are  highly  constrained  (such  as 
reports) has been possible for a long time. Attempts 
at  producing  more  general  software  in  this  way 
tend to resemble selection from a set of pre-defined 
program configurations.

The  widespread  availability  of  spreadsheet 
software  revolutionised  the  ability  of  many non-
programmers  to  produce  software  albeit  in  a 
limited  sense  [19].  A  notable  characteristic  of 
spreadsheets is the primary importance of data and 
its direct manipulation over processes, objects and 
other abstractions. The shallow learning curve has 
led to many millions of users with a basic level of 
expertise  although advanced skills  are  much less 
common. While spreadsheets can meet some of the 
basic software needs of many businesses they are 
widely  regarded  as  inappropriate  for  the 
development of sophisticated applications. 

Test  driven  development  is  a  common  software 
development  approach  in  which  automated  test 
cases are produced before the code to which they 
relate  [20].  The  test  cases  are  intended  to 
demonstrate the complete and correct operation of 
the software with respect to the requirements and 
as  such  they  represent  a  sort  of  executable 
specification.  The  widespread  use  of  test 
automation and the established role  of  test  cases 
within the  software  development  lifecycle  makes 
them  an  appealing  basis  for  an  accessible 
specification language.

It  is  interesting  that  our  understanding  of  what 
programming languages are and how they are used 
is still unfolding. Part of this insight comes from 
the  availability  of  large  corpora  of  existing 
software  and  the  tools  to  analyse  them.  For 
example  a  recent  study  showed  that  the  vast 
majority of control loops are small and have simple 
conditions while a few dozen standard patterns can 
account for most of the looping constructs used by 
developers [21]. Such findings appear to make the 
automatic generation of software a somewhat more 
tractable proposition.

3. Zoea

Zoea  is  a  new  programming  language  that 
produces  software  automatically  from  a 
specification  that  resembles  a  set  of  automated 
functional  test  cases.  The  overarching  goal  in 
producing Zoea was to make software development 
as  simple as possible  and this  is  reflected in the 
simplicity of the language. At the same time Zoea 
is  intended  to  be  a  practical  general  purpose 
programming language.

2



Zoea  does  not  have  many  of  the  elements  that  are 
normally  present  in  other  programming  languages 
such  as  variables,  conditions,  statements  or  control 
structures.  Instead  the  user  simply  specifies  the 
behaviour of the program they want by creating a set 
of  input  and  output  examples.  Zoea  is  thus  a 
declarative language.

The  following  sections  provide  a  high  level 
introduction to the core features of the Zoea language. 
This  includes  some  simple  examples  of  Zoea 
programs.  These  are  not  meant  to  demonstrate  the 
limits of what is possible but rather they are intended 
to give a sense of how the language works and what it 
is like to use. 

3.1 Terminology

In the context of Zoea an executable unit of software 
is  called  a  program.  Every  program  has  a  single 
input and a single  output.  Each program input and 
output  is  composed of  a  hierarchy of  one  or  more 
scalar  or  composite  data  types.  An  element is  any 
node in an input or output hierarchy. Each input and 
output has a single root element. Every element in an 
input or output is addressable via a  path which is a 
possibly empty list of array indexes and/or keys. The 
path which is an empty list denotes the root element. 
Programs  that  require  multiple  inputs  or  multiple 
outputs can simulate these by convention using a list 
of  elements.  (This  is  similar  to  the  way  in  which 
multiple  values  can  exist  within  a  single  HTTP 
request or response.)

A user is a person that interacts with Zoea to create 
and execute one or more programs.

An  instruction is  a  unit  of  computation  from 
which  programs  are  assembled  A  program  is 
composed of zero or more instructions. Instruction 
inputs  and  outputs  follow  the  same  rules  as 
program  inputs  and  outputs  Any  program  that 
successfully  compiles  and that  is  accessible  to  a 
user  can  be  used  as  an  instruction  in  another 
program. 

A program is specified by a set of zero or more test 
cases (or simply cases). Each case corresponds to a 
single  linear  scenario consisting of  one  or  more 
steps. A step has one input, or one output, or one 
derived value.  A  derived  value  describes  an 
internal data value that is intermediate between an 
input  and  an  output.  Test  case  input,  output  and 
derived values follow the same rules as program 
inputs and outputs.

3.2 Grammar

Listing 1 shows the grammar for the core elements 
of Zoea in EBNF notation. For simplicity Listing 1 
omits  definitions for  JSON_Value [23],  Identifier 
(number or string) and Identifier_or_list (Identifier 
or list thereof). 

The same grammar is also shown in Figure 1 as 
syntax diagrams.

3

Figure 1



Program ::= "program" ":" Identifier 
            Use ? 
            Data ?
            ( Case Case * | 
            Step Step * ) ?
Use ::=  "use" ":" Identifier_or_list
Data ::= "data" ":" Value
Case ::= "case" ":" Identifier 
         Step Step * 
Step ::= ( "step" ":" Identifier ) ? 
         ( "input" | 
         "derive" | 
         "output" ) ":" Value
Value ::= ( JSON_value | "_" )

Listing 1

3.3 Examples

Zoea  code  superficially  resembles  YAML  [22] 
however Zoea does not rely on layout for structuring. 
Zoea programs consist of a set of tags and values that 
are separated by a colon character (':').  White space 
has no meaning and can occur in any quantity before 
and after tags and values. Tags and values do not need 
to be quoted unless they contain spaces. 

Values in Zoea are basically JSON data [23] although 
as  with  YAML quotes  are  optional  for  strings  that 
contain no spaces or escaped characters. A value can 
also be represented by a single unquoted underscore 
character. This means that the corresponding value is 
unspecified as it is not used in the current test case. 
This construct can be employed instead of an actual 
value  in  any  input  or  output  element.  A  quoted 
underscore or an underscore in any other context is a 
single character value.

One or more Zoea programs can be defined in a text 
file. The name of the text file is not significant and is 
only used to submit  the programs it  contains to the 
compiler. 

All programs in Zoea must include an identifier which 
is the name of the program. A program name can be 
any non-empty string so long as it is unique across all 
programs for a given user.

The simplest program that is possible to create using 
Zoea is a null operation. Listing 2 shows a complete 
program that does nothing. 

program: do_nothing 

Listing 2

Inputs  and  outputs  are  specified  using  tags  called 
input and output. Listing 3 is a program that outputs a 
greeting. 

program: say_hello 
  output: "hello world"

Listing 3

The user is  free to lay out  the program however 
they  want.  They  could  for  example  place 
everything on one line or have each tag and value 
on separate lines but  neither of these approaches 
would be particularly usable.

In a program consisting of a single test case with 
an output and no input Zoea will assume that the 
output is a literal.  This is one simple example of 
the  many ways in which Zoea reasons about  the 
test cases.

Input and output values can be numbers, strings or 
lists. Quotes can be omitted from strings if they are 
not required. When quotes are required then single 
or double quotes can be used.

Input and output tags always take a single value. If 
multiple inputs or outputs are required then a list is 
used as in Listing 4.

program: concatenate 
  input: ["abc", "xyz"] 
  output: 'abcxyz'

Listing 4

A Zoea  program consists  of  any  number  of  test 
cases  and  each  case  can  have  an  identifier.  The 
case identifier can be any value but each has to be 
unique  within  a  particular  program.  Cases  are 
introduced by the case tag. If a program has only a 
single case then the case tag can be omitted as in 
Listing 4. Listing 5 includes three test cases. 

program: median 
 case: 1 input: [3,5,6] output: 5 
 case: 2 input: [1,2,4,6,9] output: 4
 case: 3 input: [2,4,5,8] output: 4.5

Listing 5

The median is the middle value of a sorted list of 
numbers or the average of the middle two numbers 
if the length of the list is even. When a program is 
defined using multiple test cases the order in which 
the test cases are defined is not important.

It  should be clear  that  some tags  (program,  case 
and step) remain in scope until another tag of the 
same name is encountered. For example everything 
after  a  program tag  relates  to  the  same program 
until  another  program  tag  occurs.  Similarly  the 

4



same  case  remains  in  scope  until  the  next  case  or 
program tag. 

Inputs  and  outputs  with  multiple  elements  can  be 
accomplished  using  lists.  Listing  6  calculates  the 
minimum and maximum values in a list of numbers. 

In  this  example  two cases  are  required  in  order  to 
avoid  any  ambiguity.  Using  just  case  1  might  be 
interpreted as ‘select the second and fourth elements’ 
or even ‘select the elements with an odd index’. While 
using case 2 on its  own could have meant  ‘sort’ or 
‘reverse list’. This shows that it is still  important to 
test the programs that Zoea generates and it may be 
necessary to modify the cases or add more of them to 
achieve the desired result.

program: min_and_max 
  case: 1
    input: [7,3,11,15,6] 
    output: [3,15]
  case: 2 
    input: [2,1] 
    output: [1,2]

Listing 6

Values can be embedded in input or output strings and 
these will be extracted or interpolated as appropriate. 
Listing 7 counts the words and characters in a string. 
Zoea  will  determine  that  the  numeric  values  in  the 
output  are calculated while the rest  of  the output is 
composed of literal string values. 

program: count_words_and_chars 
  input: 'how now brown cow' 
  output: '4 words and 17 characters' 

Listing 7

The next example is a little more complex. Listing 8 
extracts fields from a delimited record to produce a 
JSON object  and in the process it  carries out  some 
simple data transformations. 

program: parse_record 
  input: "001 SMITH JOHN 07/24/79 UK"
  output: { 
            "name": "John Smith", 
            "date": "24071979" 
          } 

Listing 8

The output name field is assembled from two input 
fields and the text case is changed. The format of the 
date field is also changed.

Conditionals  are  an  important  element  of  any 
programming language. Listing 9 selects only the 
females  from  a  list  of  people  and  their 
corresponding genders.

program: select_females
  input: [
          [fred,   male],
          [wilma,  female],
          [barney, male],
          [betty,  female]
         ]
  output: [wilma, betty]

Listing 9

Zoea includes knowledge about a range of software 
development techniques and one of these is regular 
expressions.  Listing  10  shows  a  program  that 
extracts a number of different value types from an 
input string.

program: extract_data
  input: 'xyz21071969abc123pqr22.7'
  output: ['21071969', 123, 22.7]

Listing 10

What is interesting about this example is that Zoea 
is able to determine that a regular expression is an 
appropriate strategy for solving this problem and 
then  goes  on  to  produce  the  correct  regular 
expression required. 

At the same time Zoea would also produce other 
candidate solutions using other instructions such as 
string  operations.  In  this  case  the  regular 
expression version is selected as the best solution 
by virtue of being the simplest.

Derived  values  are  one  of  the  mechanisms  that 
allow Zoea  to  produce  more  complex  programs. 
This  can  be  used  to  create  a  linear  sequence  or 
directed  graph  of  intermediate  values  between 
input  and  output  steps  in  a  test  case.  Listing  11 
shows  a  very  simple  example  of  how  this 
mechanism  could  be  used  to  capitalise  the  first 
letter of the words in a sentence.

program: ini_caps
  input: 'how now brown cow'
  derive: [how, now, brown, cow]
  derive: ['How','Now','Brown','Cow']
  output: 'How Now Brown Cow'

Listing 11

5



As it happens Zoea is easily capable of producing this 
program directly  without  the  need  for  derive  steps. 
However  they  can  be  useful  for  more  complex 
programs and they also to allow solutions to be found 
more quickly. Derive can be essential when the output 
depends on a condition that is expressed in terms of 
values that do not themselves appear in the output. 

Up to this point  only test  cases with a single input 
and/or a single output have been considered. Listing 
12 shows a case that consists solely of a number of 
outputs.

program: factorial
  output: [0,1]
  output: [1,1]
  output: [2,2]
  output: [3,6]

Listing 12

Zoea recognises this as a sequence and the generated 
program will continue to run beyond the initial values 
in the test case.

program: sales_tax
  case: 1 
    input: 1000 
    output: 175
  case: 2 
    input: 2000 
    output: 350

program: price_including_tax
  use: sales_tax
  input: 1000
  output: 1175

Listing 13

An  important  mechanism  in  Zoea  is  the  ability  to 
form complex programs by combining a number of 
simpler  programs.  This  is  called  composition.  In 
practise existing Zoea programs are used as additional 
instructions  in  the  new  program.  Composition 
supports  a  style  of  bottom  up  incremental 
development.  In order to be able to use an existing 
program in a new program the existing program must 
have compiled successfully. The developer indicates 
that  an  existing  program  should  be  used  in  a  new 
program by including a ‘use’ tag in the new program. 
The value associated with this tag is either the name 
of  a  single  program  or  a  list  of  program  names. 
Listing 13 shows a simple example of composition in 
Zoea.

Programs often require reference data that is relatively 
static and which can be large. It would be tedious to 

have to provide information like this as additional 
inputs for every test case. Instead Zoea provides a 
facility to specify such values once at the start of a 
program.  Listing  14  shows  an  example  of  this 
feature in use.

program: is_week_day
  data: [monday,tuesday,wednesday,
        thursday,friday,
        saturday,sunday]
  case:1 input: thursday output: true
  case:2 input: 'MONDAY' output: true 
  case:3 input: banana output: false
  case:4 input: '' output: false

Listing 14

This paper presents a range of simple examples of 
Zoea programs.  Most  of  these require  very little 
explanation due to the simplicity of the language. 
The examples also cover virtually all of the syntax 
of the language as it currently exists. 

3.4 Language enhancements

The language is currently being extended to allow 
the  production  of  programs  that  are  sensitive  to 
date and time or that use random values. Similar 
facilities will be used to enable programs to query 
or  manipulate  the  environment.  An  ability  to 
organise programs into packages is also planned.

Currently Zoea programs are written in a text file 
and submitted to the compiler using command line 
tools. In the future a simple graphical user interface 
will be developed that will serve as an interactive 
development environment. It is expected that this 
will increase the usability considerably.

The provision of user feedback is recognised as an 
important  aspect  of  the  development  process 
although very little has been done in this regard to 
date. At present the user submits a Zoea program to 
the  compiler  and  after  some  time  is  notified 
whether  compilation  was  successful  or  not.  In 
formulating a solution Zoea can make a number of 
assumptions  regarding  the  test  case  data  and  its 
transformation.  It  would be useful  to make these 
assumptions  visible  to  the  user  in  a  convenient 
format and also provide a mechanism that would 
allow  the  user  to  accept  or  reject  them.  Such 
interaction  would  make  the  development  process 
more engaging and probably also more effective.

Another  planned  enhancement  is  the  ability  to 
describe the side effects of programs. For example 
it  should be possible to  specify how a particular 
test case might change the contents of one or more 

6



database tables or files. While such facilities will be 
supported  in  the  source  language  it  will  be  more 
convenient  for  users  to  specify  such  behaviour 
through a user interface. This will also enable inputs 
and  outputs  to  be  expressed  in  terms  of  user 
interaction  allowing  Zoea  to  be  used  for  the 
development of GUI applications.

Zoea  currently  targets  its  own  virtual  machine.  It 
would also be possible to target other virtual machines 
or to generate code in other programming languages. 
This  feature  is  not  a  high  priority  relative  to  those 
above. 

4. Zoea compiler

Zoea consists of the programming language together 
with an associated compiler and virtual machine. The 
Zoea compiler uses symbolic artificial intelligence to 
transform  test  cases  into  software.  It  does  this  by 
applying  a  number  of  reasoning  strategies  in 
conjunction  with  a  wide  range  of  software 
development knowledge.

It  is  quite  common  for  systems  analysts  to 
communicate some or even all the requirements for a 
program as a set of test cases. As a result turning a set 
of  test  cases  into  a  program is  a  daily  activity  for 
many software developers. Nevertheless as with many 
of the things that people accomplish habitually it  is 
easier to do than it is to describe or explain. 

4.1 Problem space

In the most general terms the Zoea compiler needs 
to generate a program that will transform a specific 
input into the correct output for each of a number 
of test cases. In this sense an acceptable solution 
needs to work with all of the test cases. 

At the same time a partial solution may work with 
a subset of the test cases, or with a subset of the 
output elements, or with both of these limitations. 
Partial solutions can be combined in various ways 
to  form  complete  solutions.  For  example  the 
identification  of  more  than  one  partial  solution 
across different test cases can be interpreted as the 
existence of top level conditional logic within the 
solution.

For any given set of test cases there are an infinite 
number of possible solution candidates that can be 
identified.  One  or  more  of  these  solution 
candidates  may correspond to the  behaviour  that 
the user is trying to describe. These actual solutions 
will vary in terms of their size and complexity. As a 
general rule Zoea should find the simplest solution 
that works with all of the test cases.

Another  subset  of  solution  candidates  have  the 
characteristic that for a given test case input they 
always produce the literal corresponding test case 
output.  Indeed  there  is  a  degenerate  subset  of 
candidate solutions that always produce the literal 

7

Figure 2

Scheduler

Knowledge
Sources

(distributed)

Agenda Pool

Abstraction
Levels

Test Cases

Synthetic
Test Cases

Blackboard (distributed)

Zoea

(Test Cases)

(Solutions)

[Initialise]

[Populate]



corresponding  output  for  every  specified  test  case. 
This may or may not be the required behaviour.

On  the  other  hand  the  required  program  may  be 
expected to work with a range of inputs of which the 
test cases represent only a sample. Again there is no 
way of knowing whether this is the case or not. As a 
result  solution  candidates  must  be  evaluated  and 
ranked so that  the most appropriate member can be 
identified. The following dimensions are available:

1. Simple – complex;

2. Complete – composite;

3. General – specific.

Other  factors  being  equal  a  simple,  complete  or 
general  solution  will  be  preferred  over  the 
alternatives. However, things become more complex 
when  solution  candidates  vary  across  multiple 
dimensions.  For  example  a  more  complex  solution 
may be preferred if it is also complete.

The length of time required to find a solution is also 
important  but  not  in  the  sense  of  a  comparative 
metric.  In  the  interests  of  usability  Zoea  must 
minimise or at least limit the amount of time spent in 
trying to find one or more candidate solutions. If an 
acceptable  solution  has  not  been  found  in  the 
available time then the user should be able to choose 
whether to invest more time to find better candidates 
or alternatively provide additional or better test cases.

4.2 Architecture

The software architecture of the Zoea compiler  is  a 
variant of the blackboard model [24]. This comprises 
a standard blackboard data structure organised as an 
abstraction  hierarchy,  together  with  a  number  of 

knowledge  sources  and  a  relatively  simple 
scheduler.  The Zoea blackboard is  also recursive 
and distributed. 

Figure  2 provides  a  simplified view of  the  Zoea 
architecture. This shows the single scheduler, some 
knowledge  sources  and  the  blackboard  data 
structure.  In  practise  there  are  many  more 
knowledge sources than are shown. Test cases are 
submitted to the compiler and the data they contain 
is  used to initialise the corresponding abstraction 
levels in the blackboard. The scheduler identifies 
and selects agenda items that are distributed to the 
knowledge sources through a shared agenda pool. 
The knowledge sources update various abstraction 
levels  in  the  blackboard  to  build  up  different 
fragments of the solution until a complete solution 
is  obtained.  Some knowledge sources also create 
new synthetic  test  cases  that  correspond  to  sub-
problems that need to be solved or hypotheses that 
need  to  be  tested.  These  synthetic  test  cases  are 
handled  in  the  same  way  as  user  originated  test 
cases effectively making the blackboard recursive. 
All  of  the  knowledge  sources  are  themselves 
embarrassingly parallelisable. 

The technical architecture consists of a cluster of 
homogeneous nodes with a single threaded process 
per physical core. There is a single controller node 
which  is  home  to  the  scheduler  and  the  master 
copy of  the  blackboard,  and many worker  nodes 
(currently 32). 

Each worker node has an eventually complete copy 
of  the  blackboard  and  all  knowledge  sources. 
Cluster  nodes  communicate  using  persistent 
message queues. Figure 3 shows a more detailed 

8

Figure 3

Controller Worker

Blackboard

Cycle Results

Worker

Blackboard

Cycle Results

Worker

Blackboard

Cycle Results

Worker

Blackboard

Cycle Results

Blackboard

Cycle Delta

Agenda Partition

Cycle Delta

Cycle Delta

Agenda Partition Agenda Partition Agenda Partition

Result Queue

Agenda
Partition Pool

Update Queue
Scheduler

Agenda

Knowledge
Sources

2 3

4

5

6

7 8

1



view  of  the  deployment  architecture  and  the 
blackboard lifecycle. 

The blackboard operates in cycles. Within each cycle 
a single knowledge source is selected by the scheduler 
and  all  activity  on  all  workers  is  undertaken  with 
respect to that knowledge source.

The  scheduler  maintains  a  single  agenda  which  it 
derives  from  the  initial  or  current  state  of  the 
blackboard.  Agenda  entries  relating  to  the  selected 
knowledge source are partitioned into work packages 
(tasks) and placed in the agenda pool.  Each worker 
claims  a  task  and  invokes  the  relevant  knowledge 
source with the subset of the agenda it contains.

On completion of each task the worker collects the set 
of changes to the blackboard and posts these back to 
the controller via the results queue. The worker then 
continues  by  claiming  another  task  if  more  are 
available.

As the cycle progresses the controller asynchronously 
collects results from workers and updates its copy of 
the blackboard. At the end of the cycle the controller 
creates a consolidated delta that uniquely captures all 
blackboard changes in the current cycle. This is sent 
to all workers so they can update their local copies of 
the blackboard. At this point all of the blackboards are 
again identical.

The  coordination  activities  including  handling  of 
results  and  updates  accounts  for  less  than  2%  of 
available computational resources.

4.3 Abstraction hierarchy

The abstraction hierarchy models and integrates the 
key  concepts  used  by  the  various  knowledge 
sources  in  formulating  code  solutions  that 
correspond  to  test  cases.  The  abstraction  levels 
represent a general progression from the test cases 
through available and derived values to partial and 
complete solutions. The abstraction levels include:

• test cases;

• input and output elements;

• derived values (symbolic and numeric);

• code fragments;

• target values;

• case solutions;

• case set solutions;

• program solutions;

• solution code.

The data on the blackboard represents a set of more 
or  less  promising  solution  fragments  at  different 
stages  of  identification,  characterisation  and 
elaboration.  It  is  worth  noting  that  progression 
from test  cases  to  solution code is  not  a  strictly 
linear process. Instead knowledge sources respond 
to  changes  at  one  or  more  specific  abstraction 
levels to produce, enhance or remove elements on 
different levels. The blackboard model allows this 
to  happen  in  more  or  less  any  order.  This 

9

Figure 4

Test Case

Element Element

Target

ValueValue

Code Fragment Code Fragment

Target

Case Solution Case Solution

Solution Set

Conditional

Solution

Blackboard

A
bs

tr
a

ct
io

n
 L

e
ve

ls

Test Case

Conditional case Conditional Case

Conditional Set

Discriminator



characteristic of blackboard systems is often referred 
to as the opportunistic application of knowledge.

The  knowledge  sources  effectively  act  as  a  set  of 
experts  that  embody  software  development 
knowledge and/or apply various reasoning strategies. 
All  interaction  between  knowledge  sources  takes 
place via  the  blackboard and in  this  sense they are 
said to be loosely coupled. 

Most  of  the  knowledge  sources  represent  different 
aspects of software development knowledge such as 
string manipulation,  conditionals,  collections  and so 
on. Other knowledge sources are more abstract such 
as  those  that  reason  about  combinations  of  sets  of 
solutions.

Each knowledge source identifies opportunities where 
its knowledge can be applied. This often corresponds 
to the creation of assumptions which ultimately may 
turn out to be valid or invalid. In any given scenario 
preference may be given to the veracity or otherwise 
of  a  given  assumption  but  Zoea  ensures  that  both 
alternatives  are  explored  if  necessary.  Policy 
regarding specific assumption types are one example 
of  the  many  kinds  of  heuristics  employed  in  the 
compiler.

Figure 4 shows a simplified view of the blackboard 
abstraction  levels  corresponding  to  a  simple 
conditional statement. At the top are entries relating to 
the  test  cases.  The  arrows  represent  associations 
between  entries  in  different  abstraction  levels.  The 
test  cases  are  connected  to  (input)  elements  and 
(output) targets. Code fragments combine elements to 
form new intermediate values of which only a couple 
are shown - although in reality there are likely to be 
many. Case solutions represent candidate solutions to 
individual test cases and these are combined to form 
sets that represent possible candidate solutions. In this 
case there is no single solution that produces all of the 
test cases so a conditional is required. 

The conditional logic is determined through a similar 
process  that  ultimately  produces  a  composite 
conditional  referencing  the  previously  determined 
code  fragments.  Any  alternative  solutions  would 
coexist on the relevant abstraction levels. Ultimately 
any  judgement  regarding  the  relative  fitness  of 
solutions  will  be  conducted  with  respect  to  the 
ensemble.

At  any point  in  time  the solution  islands  that  exist 
across different blackboard abstraction levels together 
with the hierarchy of recursive blackboard instances 
corresponding to synthetic test cases form the solution 
space.  There  are many options  with respect  to how 
this solution space can be explored. As a hedge Zoea 

uses  multiple  strategies  concurrently  with  the 
winner being either:

• the first consistent solution to all test cases 
or 

• the  optimum  solution  available  after  a 
given period of time.

The  blackboard  architecture  makes  it  easy  to 
integrate  a  variety  of  problem  solving  strategies 
without having to worry about the order in which 
they are invoked or even how they interface with 
one another. 

Pattern recognition applied to the input and output 
can yield important clues about how the intended 
program needs to work. A simple example is where 
an output is composed of different elements some 
of which are directly available in the input. In this 
case  the  real  problem  now  becomes  how  to 
assemble the output elements that are not directly 
available from the input. In this scenario the initial 
problem is reformulated as a synthetic test case that 
tries  to  determine  how  the  unknown  values  are 
assembled from the input.

Another area where direct inspection can make a 
significant  difference  is  in  formulation  of  the 
instruction  set.  If  it  was  known  what  specific 
instructions  are  required in  order  to  generate  the 
solution then the task would become significantly 
easier. Zoea uses pattern recognition to produce a 
candidate  solution  instruction  set  based  on  the 
input  and  output  type  signatures  and  other 
characteristics.  This  approach  is  often  but  not 
always successful. Where it does work the solution 
is  generally  obtained  much  more  quickly.  In  the 
small proportion of cases where it is less successful 
the  alternative  strategy  of  using  the  complete 
instruction set is also pursued so the net result is a 
relatively small amount of wasted effort.

Part  of  the  sophistication  of  the  Zoea  compiler 
comes from the blackboard being used recursively. 
Normally  the  compiler  operates  on  test  cases 
provided by a user to produce a complete program. 
This process often involves the creation of many 
hypotheses  in  various  knowledge  sources.  A 
convenient  way  to  minimise  the  need  for  state 
management  is  to  translate  such  hypotheses  into 
sets  of  synthetic  test  cases.  These  synthetic  test 
cases  which  are  generally  simpler  are  then 
processed by new instances of the blackboard. 

A single set of test cases can result in a hierarchy 
of  synthetic  test  cases  that  represent  different 
assumptions  about  the  solution.  All  of  the 
information  relating  to  each  instance  of  the 

10



blackboard  is  completely  partitioned  from all  other 
instances. 

Although  Zoea  is  characterised  as  ‘inductive 
programming’ this really reflects the operating model 
more than the technological approach. Induction is not 
that  important  in  Zoea  and  more  use  is  made  of 
pattern recognition and abductive reasoning. Similarly 
state space search is avoided whenever possible but it 
is often necessary so considerable effort has been put 
into finding good heuristics.

4.4 Enabling technologies

Zoea  incorporates  a  number  of  technologies  that 
enable it to produce larger programs without the need 
for  composition  or  explicit  statement  of  derived 
values. A few of these are discussed here.

One of the biggest problems in generating programs 
automatically is the size of the search space. A naive 
approach  might  simply  take  the  input  values  and 
combine  them  with  the  available  instructions  to 
produce intermediate values, and repeat this process 
until the required output value is obtained. However, 
the  search  space  rapidly  becomes  enormous  if  the 
program is longer than three or four instructions.

Zoea avoids the use of state space search whenever 
possible.  This  is  mainly  accomplished  by  applying 
pattern  recognition  to  the  test  case  data  to  identify 
mapping  and  transformation  relationships  between 
input and output elements. Pattern recognition is also 
used  to  customise  the  instruction  set.  Nevertheless 
there are situations where search is required and Zoea 
uses  a  number  of  techniques  to  make  this  more 
efficient.

For  any  given  search  space,  the  space  of  distinct 
intermediate  values  is  significantly smaller  than the 
space of all  possible  intermediate value derivations. 
This is true because there are many different ways in 
which the same intermediate value can be derived. As 
intermediate  values  are  produced  from  other 
intermediate values the number of derivations grows 
rapidly with increasing depth. Zoea reduces the size 
of  the  search  space  significantly  by  decoupling  the 
tracking of intermediate values from how they are are 
derived. When an interesting value is found a reverse 
search is performed to find its derivations. On its own 
this  is  a  powerful  technique  but  it  can  also  be 
extended considerably.

The  state  space  that  is  composed  of  test  case  and 
intermediate values,  and instructions can be thought 
of as a single (enormous) data flow graph. This graph 
is the output of the distinct value approach described 
above.  Within  this  graph  each  candidate  solution 
exists  as  a  data  flow  subgraph.  When  searching  a 

graph it is much easier to find a linear data flow 
sequence between two given  values  than it  is  to 
find  a  complete  subgraph.  Such  data  flow 
sequences often contain unrecognised intermediate 
values.  In  a  data  flow  subgraph  for  a  candidate 
solution  some  of  these  unrecognised  values 
correspond to  (symbolic  or  numeric)  deltas  with 
respect to known values. This correspondence can 
be  used  in  turn  to  ‘grow’ the  branches  of  the 
subgraph from the  nodes of  the  linear  data  flow 
sequence. 

When  programs  are  generated  according  to  a 
language grammar there  are  many programs that 
are  syntactically  correct  but  semantically 
nonsensical for a variety of reasons. For example a 
program can be written that first reverses a list and 
then sorts it. In this example the reverse operation 
is  redundant  as  its  side  effects  are  completely 
obliterated by the subsequent sort operation. Zoea 
has  functionality  that  enables  it  to  generate  only 
candidate  programs  that  are  sensible  as  well  as 
syntactically correct.

For each program there exists an infinite number of 
functionally equivalent programs of which one or 
more will be the smallest in terms of the number of 
instructions  they  contain.  (This  is  intuitively 
obvious as redundant instructions can be added to 
any  program  to  produce  another  functionally 
equivalent  program.)  Zoea  avoids  considering 
duplicate  programs  by  generating  only  programs 
and  fragments  of  programs  that  are  functionally 
distinct. 

Programming languages with large instruction sets 
tend to produce smaller programs and consequently 
have shallower search spaces than languages with a 
small  number  of  instructions.  This  is  a  frequent 
observation  concerning  concatenative  languages 
such as Forth. The Zoea virtual machine has a large 
and  open  ended  instruction  set  which  makes 
compiled Zoea programs much smaller than they 
otherwise would be. 

Zoea was developed from first  principles using a 
clean room process and without  reference to any 
existing  or  reported  system,  technology  or 
approach.  It  contains  no  third  party  components 
and not a single line of third party code. 

5. Discussion

Inductive  programming  is  a  technology  enabled 
process  that  involves  one  or  more  people 
articulating  software  requirements  which  are 
transformed  into  code.  For  any  non-trivial 
application it is natural that this process should be 

11



incremental  and  iterative.  The  design  of  Zoea 
recognises the importance of these characteristics by 
allowing  more  complex  programs  to  be  developed 
using  stepwise-refinement  and  assembled  through 
composition. This is similar to how many professional 
software  developers  prefer  to  work  but  it  does  not 
require any greater level of technical expertise. 

There was a lot of interest in the use of input-output 
examples in the early days of inductive programming 
research. However a criticism that became widespread 
was  that  this  approach  would  not  scale  as  more 
complex programs would require very large numbers 
of  examples  to  adequately  describe  complex 
conditional  logic.  It  is  worth remembering that  this 
view  dated  from  an  era  when  people  still  wrote 
monolithic programs consisting of tens of thousands 
of lines of code in a single file. Even so this viewpoint 
turns out to have been an incorrect assessment. This is 
because the same problem had already been solved in 
the  context  of  decision  tables  through  hierarchical 
decomposition.  These  days  it  is  unremarkable  for 
large  code  bases  consisting  of  millions  of  lines  of 
code  to  have  an  average  method  length  in  single 
digits. It is also now commonly accepted that complex 
behaviour and large applications are amenable to test 
automation. 

Zoea is not intended to replace existing programming 
languages  and  there  are  probably  some  areas  of 
software development  where this  approach may not 
be  particularly  appropriate.  Nevertheless  there  are 
many areas where this approach could be safely used 
and  also  justified.  Much  of  the  software  that  is 
currently  developed  is  not  complex  but  rather 
repetitive and formulaic. Zoea is well suited for this 
kind  of  development  -  potentially  freeing  up 
professional software developers for more interesting 
work. Zoea could also allow many more people who 
aren’t professional programmers to create software to 
meet their own requirements.

Zoea  is  a  very  different  kind  of  programming 
language  and  as  such  it  is  difficult  to  predict  how 
languages of  this  kind will  be  used in  practise  and 
how they  might  evolve.  For  this  reason Zoea  as  it 
currently exists should be viewed as a first iteration 
rather than the finished product. 

6. Conclusions

Zoea  is  a  very  simple  programming  language  that 
bares a strong resemblance to a set of test cases. It can 
be learned quickly and can be used to produce a wide 
range of software. The ability to form larger programs 
through  composition  means  that  it  could  enable 
people  with  no  previous  software  development 
expertise  to  produce  moderately  complex  software 

with little training. Zoea is  made possible by the 
symbolic  AI  and  blackboard  architecture  in  its 
compiler.

Acknowledgements

This  work  was  supported  entirely  by  Zoea  Ltd 
(https://www.zoea.co.uk).  All  trademarks 
mentioned in  this paper are  the  property of their 
respective owners.

Copyright © Zoea Ltd. 2019. All rights reserved.

Syntax diagrams were produced using Railroad 
Diagram Generator 
(https://www.bottlecaps.de/rr/ui).

References

[1] Dustin, E., Rashka, J., Paul J. (1999) 
Automated Software Testing. New York, 
Addison Wesley. ISBN 978-0-201-43287-9.

[2] Beck K. (1999) Embracing Change with 
Extreme Programming. IEEE Computer 32 
(10), 70-77.

[3] Holmstrom Olsson, H., Alahyari, H., Bosch, J. 
(2012) Climbing the "Stairway to Heaven" -- A 
Multiple-Case Study Exploring Barriers in the 
Transition from Agile Development towards 
Continuous Deployment of Software. 
Proceedings of the 2012 38th Euromicro 
Conference on Software Engineering and 
Advanced Applications. IEEE Computer 
Society, 392–399.

[4] Evans Data Corporation (2019) Global 
Developer Population and Demographic Study 
2019 Volume 1. Evans Data Corporation. 
Available from: 
https://evansdata.com/reports/viewRelease.php
?reportID=9 (Retrieved: 1 Nov 2019).

[5] Andreessen M. (2011) Why Software Is Eating 
The World. Wall Street Journal August 20, 
2011. Available from: 
https://www.wsj.com/articles/SB10001424053
111903480904576512250915629460 
(Retrieved: 1 Nov 2019).

[6] Rich, C., Waters, R.C. (1993) Approaches to 
automatic programming. Advances in 
Computers 37, 1-57. Boston, Academic Press.

[7] Manna, Z., Waldinger, R. (1980) A deductive 
approach to program synthesis. ACM 
Transactions on Programming Languages and 
Systems. 2 (1), 90–121. 

[8] Kitzelmann, E. (2010) Inductive programming: 
A survey of program synthesis techniques. 
Approaches and Applications of Inductive 

12



Programming. Lecture Notes in Computer Science 
5812, 50–73. Berlin, Springer-Verlag.

[9] Summers, P.D. (1977) A methodology for LISP 
program construction from examples. Journal of 
the ACM. 24 (1), 161–175. 

[10] Shapiro, E.Y. (1981) The model inference system. 
Proceedings of the 7th international joint 
conference on Artificial intelligence 2, 1064-1064. 
San Francisco, Morgan Kaufmann.

[11] Katayama, S. (2008) Efficient exhaustive 
generation of functional programs using Monte-
Carlo search with iterative deepening. PRICAI 
2008: Trends in Artificial Intelligence, 199-210. 
Berlin, Springer-Verlag. 

[12] Galwani, S., Hernandez-Orallo, J., Kitzelmann, E., 
Muggleton, S.H., Schmid, U., Zorn, B. (2015). 
Inductive Programming Meets the Real World. 
Communications of the ACM 58 (11), 90–99.

[13] Rich, C., Waters, R.C. (1988) The Programmer’s 
Apprentice: A Research Overview. IEEE 
Computer 21(11), 10-25.

[14] Vincent, J. (2019) This ai-powered autocompletion 
software is gmail’s smart compose for coders – 
upgrading codingautocompleter tools with deep 
learning, Available from: 
https://www.theverge.com/2019/7/24/20708542/c
oding-autocompleter-deep-tabnine-ai-deep-
learning-smart-compose (Retrieved 1 Nov 2019).

[15] Kite (2019) Kite announces intelligent snippets for 
python. Available from: https://dev.to/kite/kite-
announces-intelligent-snippets-for-python-13i0 
(Retrieved: 1 Nov 2019).

[16] Little, G., Miller R. (2009) Keyword programming 
in Java. Automated Software Engineering 16 (1). 
37-71. 

[17] Myers, B.A. (1990) Taxonomies of visual 
programming and program visualization. Journal 

of Visual Languages & Computing 1 (1), 97-
123.

[18] Whitley, K.N. (1997) Visual Programming 
Languages and the Empirical Evidence For and 
Against. Journal of Visual Languages & 
Computing 8(1), 9-142.

[19] Gislason, H. (2018) Excel vs. Google Sheets 
usage — nature and numbers. Available from: 
https://medium.com/grid-spreadsheets-run-the-
world/excel-vs-google-sheets-usage-nature-
and-numbers-9dfa5d1cadbd (Retrieved: 1 Nov 
2019).

[20] Beck, K. (2002). Test-Driven Development by 
Example. Vaseem: Addison Wesley. ISBN 978-
0-321-14653-3.

[21] Allamanis, M., Barr, E.T., Bird, C,, Devanbu, 
P., Marron, M., Sutton, C. (2018) Mining 
semantic loop idioms. IEEE Trans Software 
Engineering 44 (7), 651-668.

[22] Ben-Kiki, O., Evans, C., Döt Net, I. (2009) 
YAML Ain’t Markup Language (YAML™) 
Version 1.2. Available from: 
https://yaml.org/spec/1.2/spec.html (Retrieved: 
1 Nov 2019). 

[23] ECMA International (2017) The JSON Data 
Interchange Syntax. ECMA-404. 2nd edition. 
Available from: http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-404.pdf (Retrieved: 1 Nov 2019). 

[24] Nii H.P. (1986) The Blackboard Model of 
Problem Solving and the Evolution of 
Blackboard Architectures. AI Magazine 7 (2), 
38-53.

13


	Abstract
	1. Introduction
	2. Related work
	3. Zoea
	3.1 Terminology
	3.2 Grammar
	3.3 Examples
	3.4 Language enhancements

	4. Zoea compiler
	4.1 Problem space
	4.2 Architecture
	4.3 Abstraction hierarchy
	4.4 Enabling technologies

	5. Discussion
	6. Conclusions
	Acknowledgements
	References

