
A Visual Language for Composable Inductive
Programming

Edward McDaid FBCS
Chief Technology Officer

Zoea Ltd

Sarah McDaid PhD
Head of Digital

Zoea Ltd

Abstract

We present Zoea Visual which is a visual programming language based on the Zoea composable inductive
programming language. Zoea Visual allows users to create software directly from a specification that
resembles a set of functional test cases. Programming with Zoea Visual involves the definition of a data flow
model of test case inputs, optional intermediate values, and outputs. Data elements are represented visually
and can be combined to create structures of any complexity. Data flows between elements provide additional
information that allows the Zoea compiler to generate larger programs in less time. This paper includes an
overview of the language. The benefits of the approach and some possible future enhancements are also
discussed.

1. Introduction

This paper describes the visual programming
language Zoea Visual. In order to understand the
motivation and design of Zoea Visual it is first
necessary to briefly recap the underlying Zoea
language.

Zoea is a simple declarative programming language
that allows a user to construct software directly from a
specification that resembles a set of functional test
cases [1]. It is based on the concept of inductive
programming [2]. Given a set of input and output
examples the Zoea compiler uses AI to generate
hypothesises about the required code. Zoea uses
inductive programming to provide a complete, general
purpose programming language. In doing this it
recognises the active role of the developer in the
software development process. To this end it includes
the ability to specify any number of optional
intermediate values between the input and the output
of a test case. It also allows the developer to compose
larger programs by combining any number of smaller
programs. As a result Zoea is characterised as a
composable inductive programming language.
Composability enables Zoea to be used to construct
software of any size and complexity.

The syntax of Zoea is similar to YAML with the
exception that program layout is not significant [3]. A
small set of tags denote the program name, test case
identifiers, inputs, derived values and outputs. Data is
represented using JSON [4]. Listing 1 shows a simple
example of a complete Zoea program. The Zoea
language has no variables, statements, conditionals,

control structures or functions. Instead the
developer simply provides a number of test cases
showing examples of inputs and outputs as static
data. The Zoea compiler uses programming
knowledge, pattern matching and abductive
reasoning [5] to automatically identify the required
code [1]. Knowledge sources are organised as a
distributed blackboard architecture [6]

The Zoea language is around 30% as complex as
the simplest conventional programming languages
[7]. Zoea programs are on average about the same
size as equivalent programs in conventional
languages but are 50% less complex. As a result
Zoea is simple to learn and comparatively easy to
use. Having said that the syntax of JSON
represents around 80% of the grammar complexity
of the Zoea language.

program: is_week_day
determines if input is a weekday
 data: [monday,tuesday,wednesday,
 thursday,friday,saturday,
 sunday]
 case: 1 input: thursday
 output: weekday
 case: 2 input: 'MONDAY'
 output: weekday
 case: 3 input: banana
 output: unrecognised
 case: 4 input: ''
 output: unrecognised

Listing 1: Example Zoea Program

1

Zoea was created with the goal of making software
development simpler and accessible to many more
people. Learning Zoea certainly takes less time and
effort than conventional programming languages. Yet
most of this residual complexity involves the syntax
used for data representation. In this context Zoea
Visual was developed to further improve the usability
of the Zoea language.

2. Visual Programming

Visual representations of programs have co-existed
with software for most of its history. Flowcharts were
widely used for specification and documentation
purposes by the time that high level languages were
introduced in the 1950s. Interactive creation of
programs as diagrams was introduced by Sutherland
in the 1960s as one of the first applications of the
enabling graphical display and input technologies [8].
Visual programming became more widespread in the
1980s and 1990s with the introduction of graphical
workstations and personal computers [9]. There are
now many visual programming languages [10, 11,12].
Many of which are aimed at education or niche
domains [13,14,15,16,17].

Visual programming languages can be characterised
and evaluated with respect to a number of dimensions
[18]. In this paper we will focus on the following
characteristics as being the most relevant:

• Literal to abstract representation;

• Partial to complete programming language;

• Specialist domain or general purpose.

Literal languages such as those that resemble flow
charts often have a clear correspondence between
visual and conventional language elements. Abstract
languages, such as use case diagrams, are more
remote from the code they relate to and may include
non-software elements such as users.

The source code of a conventional program often
encodes several orthogonal aspects of software
including program statements, program structure,
variable scope, control flow, threading, message
passing and data flow. Visual languages do not always
need to describe a complete system. For example,
entity relationship and class diagrams are widely used
in some circles to describe database schemas and class
models respectively. UML, for example, includes a
number of different diagram types to model different
system perspectives. While it is possible to generate
fragments of code from UML diagrams it is not in
itself a complete programming language.

Special purpose or domain specific visual
languages have also been developed. One
interesting early example was the Speech
Knowledge Interface [19] which demonstrated that
complex knowledge elicitation could be
successfully achieved by providing the domain
expert with a bespoke visual language. Many other
domain specific visual languages have been
developed.

Visual languages that try to be complete, general
purpose programming languages face a number of
challenges. Algorithmic information theory [20,21]
suggests that any single notation used to describe
software must either be as complex as the software
it describes or else it must trade off generality. The
use of multiple notations does not improve on this
situation.

Whilst visual programming has always seemed like
a good idea, it has constantly grappled with the
following issues:

• Diagrams take up a lot of space on the
screen compared to equivalent code;

• Software is complex and diagrams of
software can quickly become
incomprehensible;

• It often takes longer to produce a diagram
than the equivalent code in a conventional
language;

• Literal visual languages have all of the
same concepts as equivalent conventional
programming language (variables,
conditions, control structures, etc.) so
learning such a visual language is not
significantly easier;

• Languages and frameworks often employ
many classes and methods making it
difficult to remember, find or discover
relevant components and functions;

• There are often too many concepts to
represent visually in a distinctive or
recognisable way so visual languages often
rely heavily on textual annotation.

These issues have never been completely
addressed. This is mostly due to the intrinsic
complexity of the various visual languages
themselves. While visual programming plays an
important role in some areas a complete and
compelling visual programming language remains
elusive.

2

Abstraction is often identified as a possible way of
addressing some of these problems. As with
conventional programming languages there is much
interest in approaches that involve different
programming paradigms, higher level languages and
higher order programming. Unfortunately none of
these approaches have addressed the issues associated
with visual programming to a significant extent.

3. Zoea Visual

Zoea Visual was conceived as a means of writing
programs in the Zoea language using a visual
programming approach. It was designed to meet the
following high level requirements:

• Produce complete Zoea programs of any size;

• Submit the program to the Zoea compiler;

• Provide real-time feedback on compilation;

• Run the compiled program.

In addition it had the following non-functional
requirements:

• Usable in the sense of being simple and
intuitive;

• Represent programs and data visually;

• Ideally, require no change to Zoea language.

The name Zoea Visual is used to describe both the
visual programming language and the associated
graphical user interface.

3.1 Data Representation

Zoea programs consist mostly of data. The Zoea
language includes a handful of tags that define the
program name, case and step identifiers and
program composition relationships. Everything
else in a Zoea program is static data.

Data in Zoea is represented using JSON. This is a
general purpose format that is also relatively
simple. However large or nested data structures are
not easy to comprehend even for seasoned
developers. Since Zoea is also intended to be
accessible for non-developers the representation of
data is an important aspect of Zoea Visual.

Data elements in Zoea Visual are represented
visually rather than using a serialised text format.
Figure 1 provides a summary of Zoea Visual data
type representations.

Individual values such as numbers and strings are
represented using a textarea element. Initially this
resembles a single line input field but it is
configured to resize automatically to accommodate
larger or multi-line values up to around 50% of the
screen height. Beyond this scrolling is necessary.
The user is also able to resize data elements
horizontally.

One dimensional arrays (or lists) are represented as
a table with a single vertical column. Each cell in
the table has an input field for a single value.
Similarly, two dimensional arrays are represented
as a table with one or more columns. The rows
represent the first dimension and the columns

3

Figure 1 – Zoea Visual Data Elements

represent the second dimension. Additional
dimensions can be supported if required by combining
the appropriate number of one and two dimensional
arrays. Tables have a small box at the start and end of
each row. This is used to facilitate row selection.
Visually it also differentiates a one dimensional array
from a table with one column.

Objects (or maps) consist of a list of key-value pairs.
Both the key and the value can be edited by the user.
The value part is represented in the same way as a
single value element while the key resembles a label.

Empty values in input fields are indicated using
placeholder text to display the string 'empty' which is
also coloured grey. Note that this is not an actual
value so it will not be confused with a real string with
the same value by the compiler. Empty lists, tables
and objects also have empty element variants.

3.2 Dependencies

The Zoea Visual language is largely a visual
representation of the Zoea language. The key
difference is the additional ability in Zoea Visual to
create data flow relationships between data elements.
In the remainder of this paper we will refer to these
links as dependencies. Figure 2 provides some
examples of how dependencies between different data
elements are represented in Zoea Visual.

Dependencies were added to Zoea Visual to allow
the user to be more explicit about their intention
with respect to the program that they are describing
[22]. This has two key benefits. Firstly this
additional information about the relationships
between data elements allows the compiler to
produce larger programs in less time. This is
because dependencies allow Zoea to focus on
fruitful solution candidates that utilise the correct
rather than spurious data elements. The secondary
role of dependencies is to make the developer
intent more obvious to human readers. Greater
clarity helps both the original developer and others
to understand the program more easily during
development and later.

Using Zoea Visual to create a program is an
interactive process in which the developer is
actively trying to communicate an understanding of
desired program to the Zoea compiler. This is
mainly achieved through the creation of test cases.
Dependencies augment this process. As a Zoea
developer constructs a test case they will have their
own understanding of which source elements are
involved in the production of a particular derived
value or output. Dependencies allow the developer
to capture this with little additional effort. The use
of dependencies in Zoea Visual is entirely optional
and the Zoea compiler will still work without them
although compilation will often require more time.

4

Figure 2 – Example Zoea Visual Data Element Dependencies

However, the benefits of dependencies are such that
they are likely to be used habitually.

Dependencies are represented as coloured polygons
between data elements. The left side of a dependency
covers the complete right side of the source element.
If the target is a single value then the right side of the
dependency is a point so the dependency will
resemble a triangle. Dependencies with composite
targets such as tables and lists instead cover the
complete left side of the target and so are trapezoid in
shape. This is intended to emphasise that the product
is a complete composite rather than a single value.

3.3 Interaction

All data elements can be selected in which case they
are highlighted with a yellow background. Selection is
used to create dependencies or to manipulate the
component in some way. Any number of data
elements can be selected at a single time. Composite
data elements can be selected either as a whole or in
part. For example it is possible to select an entire
table, or any number of rows in the table or any
number of cells in any row. If a complete table is
selected then any rows or cells in that table that are
already selected will become deselected. Similarly if
an entire row is selected then any cells in that row will
be deselected. It is possible to select one or more rows
in a table as well as one or more cells in different
rows at the same time.

The size of composite data elements can be specified
before they are added to the diagram. It is also
possible to resize composite elements at any time.

Different data elements can be combined in a
hierarchy to form any data structure that can be
represented by JSON. For example it is possible to
create a list of objects or to have a table as a value in
an object, and so on. Composition is achieved by
replacing the default input field in a composite data
element with whichever data structure is required.

3.4 Inputs and Outputs

Another apparent change between the Zoea base
language and Zoea Visual is that Zoea Visual supports
any number of input and output values. This is
accomplished by always mapping the input and output
elements to lists. Zoea programs that require multiple
inputs or outputs are constructed in the same way but
in Zoea Visual this convention is always enforced.
While this is largely a cosmetic change it goes a long
way towards simplifying the user experience and is
more natural for most users.

Figure 3 – Zoea Visual Navigation Structure

3.5 Navigation Structure

The high level navigation structure of Zoea Visual
is shown in Figure 3. The entry point for users is
the program screen which displays a list of existing
programs. This screen also provides an option to
create a new program. The case editor supports the
creation of test case data models and program
compilation. Once a program has been compiled it
can be executed on the run screen. Other elements
of the navigation structure are described later.

3.6 Case Editor

Each test case in a Zoea Visual program is
represented by a separate diagram. The diagram is
structured as a series of columns within which data
values are placed. The columns correspond to the
steps that are found in a Zoea program. There is a
data column for constants and static reference data.
This is followed by a single input column and any
number of derive columns. The last column is
output. The data column and any derive columns
that are empty can be hidden to simplify the
diagram. Figure 4 shows the Zoea Visual case
editor together with a test case for a simple
program.

Elements are added to a column by first selecting
the appropriate column and then selecting the
required component from a menu. Only a single
column can be selected at a given time. If a column
is selected then all data elements are deselected.
Elements are removed from a column by selecting
them and choosing the delete button. It is also
possible to reorder elements vertically within a
column. The widths of all columns can be
increased or decreased to accommodate larger data
structures or to make the diagram more completely
visible.

5

Dependencies are created by first selecting all of the
source elements and the target element, and then
selecting the link button. Element selection can be
done in any order as dependencies always go from left
to right across the diagram so the target element can
easily be identified. It is possible to create any number
of dependencies from multiple sources to a single
target at the same time.

In order to help avoid dependencies covering data
elements or each other it is possible to lay out the
diagram to some extent. This is accomplished by
moving one or more complete columns down relative
to one another by varying amounts. Layout can also
be adjusted by moving columns up.

Dependencies are always somewhat transparent. This
allows the user to more easily discern different
dependencies when they cross or when multiple
dependencies originate from the same source element.

Given that dependencies from or to table cells will
often cross other elements dependencies can also be
temporarily faded to make them more transparent.
The user can restore the appearance of dependencies
to be less transparent at any time. When an element is
selected any dependencies in which it is a source or
the target are also highlighted.

In addition to data elements Zoea Visual allows the
inclusion of comments and element labels.
Comments can be placed in any column and are
similar to single values except that they have a
dashed border. Labels are used to describe input
and output data elements at runtime and have no
border. Dependencies cannot be created to or from
comments or labels.

Additional cases can be added by creating new
diagrams from scratch or by cloning an existing
diagram. Cloning produces an exact copy of the
current diagram but with empty element values.
This saves considerable effort in diagram creation
but more importantly the data elements and
dependencies of cloned diagrams initially have
exactly the same identities. This allows the
compiler to recognise elements that relate to the
same code more quickly. Cloned diagrams can also
be edited to add and remove data elements as
required.

3.7 Overview Tab

The case editor shows a single test case diagram at
a time. In order to provide simultaneous visibility
of test case data Zoea Visual also provides a tabular

6

Figure 4 – Zoea Visual Case Editor

view of data on the overview tab. Here the values for
each data element are displayed in columns with rows
corresponding to each test case. This allows the user
to see all of the data across all test cases.

Another role of the overview is to confirm and
manage the identity of data elements across test cases.
When a test case is cloned the data elements in both
test cases share the same identity. If instead a new test
case is created from scratch then any new data
elements will have unique new identities. The
overview allows the user to indicate that two or more
data elements in different test cases should be treated
as having the same identity. Conversely it also allows
two or more elements that currently have the same
identity to be treated as being distinct.

3.8 Runtime Data

The static data elements included in the data column
are sometimes artificial and specific to the test cases
that are used to specify the program. For example a
Zoea program for a spell checker may use a toy
dictionary with very few words as test data. This
makes the program easier to specify and allows
compilation to proceed more quickly. At runtime a
complete dictionary can be substituted.

The data column in the case editor always displays the
test version of the data. The data tab displays both the
test data elements and their runtime equivalents side
by side in a table. These can be edited and resized if
necessary. During compilation Zoea Visual uses the
test version of the data. When a compiled program is
executed the runtime version of data is substituted if it
has been specified.

3.9 Uses Tab

Zoea programs are able to import other Zoea
programs with the ‘use’ tag. In Zoea Visual this is
supported by displaying a list of compiled Zoea
programs together with checkboxes. The user is able
to select any number of programs to be imported into
the current program.

3.10 Listing View

The case editor also provides a listing view in which
the diagrams for all cases are displayed on a single
page. Diagrams on the listing view are resized to fit
the browser window. This facilitates printing and
saving the diagrams as images. Dependencies on the
listing view are coloured blue as they are not intended
to convey information about the compilation state.

3.11 Compilation

The user can compile a Zoea Visual program at any
time. As compilation proceeds feedback on the
current status is provided to the user by colour
coding the data elements and dependencies. During
editing the background colour of data elements is
white unless they are selected. The normal colour
of dependencies is red. At the start of compilation
all data elements are coloured red. The diagram for
the first test case is also displayed. While a
particular data element is being compiled its colour
and that of any dependencies for which it is a target
becomes amber. The colours of data elements and
dependencies changes to green if code was
successfully produced for that target element
otherwise it reverts to red. To the user compilation
progress is seen as moving from left to right across
the diagrams. As each unique element is processed
the relevant first diagram on which that element
appears is also displayed.

At the end of compilation a message is displayed to
inform the user of success or failure. The user will
also be able to see if any of the data elements or
dependencies on the current diagram are red. If
compilation failed the source of the problem will
be obvious to the user as the left most elements or
dependencies on the current diagram that are
coloured red.

As with Zoea, compilation in Zoea Visual involves
the behind the scenes production of a number of
synthetic test cases. A synthetic test case is a
machine generated test case that consists of a
subset of the data extracted directly or indirectly
from a user originated test case. For example one
of the compilation mechanisms employed by Zoea
Visual is to construct synthetic test cases for each
data element that is the target of a set of
dependencies. This synthetic case has the target
values of the data element across all test cases as
its outputs and all of the source element values as
inputs. The set of synthetic test cases can be then
treated as separate and simpler problems. Each
separate data element in the diagram corresponds
to either a program input or a code fragment. It is
not strictly necessary to always enforce left to right
compilation and this aspect of Zoea Visual may be
modified in the future.

The data values chosen by the user for the
definition of test cases are what give Zoea its
expressive capability. A single step between an
input or derived value and another derived value or
output can correspond to a number of statements in
a conventional programming language. This
includes conditionals, loops, as well as operations

7

on sets and collections. In addition composition
enables a single step to correspond to a completely
separate existing program which may in turn have
been composed. While it is possible for Zoea to
identify multiple transformations in a single step it is
probably easier for the developer if the semantics can
also be easily identified by a human.

3.12 Program Execution

Compiled Zoea Visual programs can be run by the
user. At runtime the input and output data elements
and any associated labels are used to create input and
output forms. Composite input data elements can also
be resized as required. Input data and program details
are submitted to the Zoea interpreter for execution.
Results are returned to the browser and displayed to
the user.

3.13 Technology

The technology behind the Zoea language is described
in [1]. The Zoea Visual user interface is implemented
in HTML5, SVG and JavaScript. It uses no third party
frameworks or libraries. Communication with the
Zoea compiler is over HTTPS using JSON. It can
operate to some extent as an offline web application
but communication with Zoea is required to load, save
or execute programs.

4. Discussion

In terms of assessing Zoea Visual as a visual
programming language it is useful to revisit the issues
relating to visual programming that were identified
earlier. No quantitative comparative analysis of Zoea
Visual has been carried out as yet but it is possible to
make some qualitative assessments.

Zoea Visual programs are likely to be smaller than
equivalent programs in other visual programming
languages. This is because a single dependency in
Zoea Visual often corresponds to multiple statements
or even complete programs in conventional
programming languages.

Composable inductive programming is a
programming paradigm with a much higher level of
abstraction than other existing paradigms. As a result
much of the complexity that would be associated with
a conventional programming language is not
represented explicitly in a Zoea Visual program.

Given that Zoea Visual programs are likely to be
smaller and less complex than equivalent programs in
other visual programming languages it is likely that

they would also take less time for a user to produce
them. This of course depends on the level of
proficiency of the user in the respective languages.

In terms of the number of concepts that a user must
learn and remember Zoea Visual is significantly
simpler in terms of notation than any mainstream
conventional or visual language. Aside from the
static representation of data structures Zoea Visual
comprises a very small number of notational
elements.

When using Zoea Visual a user never has to recall
the name or parameters of a particular function.
Instead the user simply describes the required
transformation with examples of the data. This also
means that the use of text in a Zoea Visual program
is limited to the specification of test data.

Both Zoea and Zoea Visual enable the user to
specify a program using a set of functional test
cases. Every data element in a Zoea Visual
program corresponds to a fragment of the solution
code. Dependencies in Zoea Visual can be
considered to be subsidiary test cases that are
embedded in the program level test cases.
Dependencies can also span multiple test cases.
This occurs frequently where the code that a
dependency corresponds to is required for different
cases or if the code for the dependency involves
some conditional logic. As we have already noted a
dependency can also correspond to a completely
separate Zoea program that has already been
compiled and imported. It is also possible for
dependencies to overlap across test cases such that
each dependency might occur in multiple test cases
yet the set of dependencies for each test case
remains distinct.

Zoea programs are composed with the 'use' tag.
This tells the Zoea compiler that one or more
specified existing Zoea programs should be treated
as additional instructions and that it should try to
use these in the generation of the solution.
Currently the use tag is defined globally for each
program. One future enhancement for Zoea Visual
could be to allow composition to also be specified
at the data element or dependency level. The main
reason why this has not been done in the first
release is that the concept of explicit dependencies
is new in Zoea Visual and it was deemed important
to let the concept mature properly before extending
it.

Dependencies only exist in Zoea Visual. It was a
deliberate decision not to introduce the concept of
dependencies in the Zoea language. This is partly
because it is possible to produce a Zoea program

8

that has the same semantics using existing
mechanisms. More importantly it would also require
the addition of some form of data element identifiers
to Zoea. This would be a big change for Zoea which
was deliberately designed to avoid the exposure of
users to most programming concepts including
variables. Another alternative would have been to use
data element paths rather than identifiers but this was
considered too complex to be usable. For this reason
Zoea Visual can be considered to be both an extension
of the original Zoea language as well as a visual
representation of it.

An important enhancement that is planned for Zoea
Visual is the introduction of embedded test cases for
data elements. As we have already noted each data
element in Zoea Visual corresponds in some way to a
piece of code in the solution. If this code is complex
then we must either:

• Specify it vaguely and expect compilation to
take longer and perhaps fail;

• Specify it in more detail with a greater
number of program level test cases;

• Produce an external program and import it.

Embedded test cases will instead allow us to embed a
complete separate test case for that data element and
its associated set of dependencies. The embedded test
case can have its own test cases and as much detail as
we care to add including static data and derived
values. It can also include further embedded test cases
if necessary in the form of a hierarchy. This approach
avoids the exponential growth in the number of test
cases that comes with increasing complexity. It is
similar to the concept of linked decision tables.

Embedded test cases will require Zoea Visual to be
extended with some additional notational elements.
As a minimum it will be necessary to indicate visually
that a data element has an embedded test case.

Visual programming has long been considered to be a
promising approach for making software development
easier. While the approach has demonstrated
usefulness in certain areas a complete, general
purpose visual programming language that is also
sufficiently usable has yet to be developed. This may
simply be because existing programming paradigms
do not provide a sufficient level of abstraction to
make such a general purpose visual programming a
usable proposition. Composable inductive
programming represents a new programming
paradigm that also provides a very high level of
abstraction compared with other approaches.

5. Conclusions

Zoea Visual is a simple and effective visual
language for the definition of software using the
composable inductive programming approach. A
large part of the language relates to the visual
representation of static data. Data structures of any
size and complexity can be constructed from four
basic data types. Zoea Visual extends the
underlying Zoea language with the concept of
dependencies to describe the data flow
relationships between data elements. This enables
the Zoea compiler to produce larger programs in
less time.

Zoea Visual represents a significant advance in
terms of improving the usability of the Zoea
language. Its simplicity and intuitiveness make it
easy to learn and it has the potential to enable
many people with no programming experience to
create code.

Zoea Visual is also a significant advance in the
field of visual programming languages. The
combination of visual programming and
composable inductive programming addresses
many of the issues that have persistently dogged
visual languages over the years.

Acknowledgements

This work was supported entirely by Zoea Ltd
(https://www.zoea.co.uk). Zoea is a trademark of
Zoea Ltd. All other trademarks mentioned in this
paper are the property of their respective owners.

The text in Figure 4 comes from Ozymandias by
P.B. Shelly, (1818) The Complete Poetical Works
of Percy Bysshe Shelley. Available from:
http://www.gutenberg.org/ebooks/4800 (Retrieved:
15/09/2020).

Copyright © Zoea Ltd. 2020. All rights reserved.

References

[1] McDaid, E., McDaid, S. (2019) Zoea –
Composable Inductive Programming Without
Limits. arXiv:1911.08286 [cs.PL].

[2] Kitzelmann, E. (2010) Inductive
programming: A survey of program synthesis
techniques. Approaches and Applications of
Inductive Programming. Lecture Notes in
Computer Science 5812, 50–73. Berlin,
Springer-Verlag.

[3] Ben-Kiki, O., Evans, C., Döt Net, I. (2009)
YAML Ain’t Markup Language (YAMLTM)

9

Version 1.2. Available from:
https://yaml.org/spec/1.2/spec.pdf (Retrieved:
15/09/2020)

[4] ECMA International (2017) The JSON Data
Interchange Syntax. ECMA-404. 2nd edition.
Available from: http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-404.pdf (Retrieved: 15/09/2020)

[5] Gabriele, P. (1993) Approaches to abductive
reasoning: an overview. Artificial Intelligence
Review 7(2), 109-152.

[6] Nii H.P. (1986) The Blackboard Model of
Problem Solving and the Evolution of
Blackboard Architectures. AI Magazine 7(2), 38-
53.

[7] McDaid, E., McDaid, S. (2019) Quantifying the
Impact on Software Complexity of Composable
Inductive Programming using Zoea.
arXiv:2005.08211 [cs.PL].

[8] Sutherland, W.R. (1966) The On-line Graphical
Specification Of Computer Procedures.
Massachusetts Institute of Technology. Dept. of
Electrical Engineering. Thesis Ph.D.

[9] Myers, B.A. (1990) Taxonomies of visual
programming and program visualization. Journal
of Visual Languages & Computing 1 (1), 97-123.

[10] Johnston, W.M., Hanna, J.R.P., Millar, R.J.
(2004) Advances in dataflow programming
languages. ACM Computing Surveys 36(1), 1–
34.

[11] Patton, E.W., Tissenbaum, M., Harunani, F.
(2019) MIT App Inventor: Objectives, Design,
and Development. Computational Thinking
Education, 31-49. Singapore, Springer.

[12] Maloney, J., Resnick, M., Rusk, N., Silverman,
B., Eastmond, E. (2010) The Scratch
Programming Language and Environment. ACM
Transactions on Computing Education 10(4), 16,
1-15.

[13] Bockermann, C. (2014) A Visual Programming
Approach to Big Data Analytics. Design, User
Experience, and Usability. Lecture Notes in

Computer Science 8518, 393-404. Berlin,
Springer.

[14] Ray, P.P. (2017) A Survey on Visual
Programming Languages in Internet of
Things. Scientific Programming 2017,
1231430, 1-6. London, Hindawi. ISSN:
1058-9244.

[15] Andrade, A. (2015) Game engines: a survey.
EAI Endorsed Transactions on Game-Based
Learning 2(6), 150615. DOI: 10.4108/eai.5-
11-2015.150615.

[16] Jeffrey., T., Kring, J. (2006) LabVIEW for
everyone: graphical programming made easy
and fun. (3rd ed.). New Jersey: Prentice Hall.
ISBN 0131856723.

[17] Galwani, S., Hernandez-Orallo, J.,
Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B. (2015). Inductive Programming
Meets the Real World. Communications of the
ACM 58 (11), 90–99.

[18] Modugno, F., Green, T.R.G., Myers, B.A.
(1994) Visual Programming in a Visual
Domain: A Case Study of Cognitive
Dimensions. People and Computers IX,
Proceedings of HCI '94, 91-108. Cambridge,
Cambridge University Press.

[19] Edmonds, E.A., O'Brien, S.M., Bayley, T.,
McDaid, E (1993) Constructing end-user
knowledge manipulation systems.
International Journal of Man-Machine Studies
38(1), 51-70.

[20] Kolmogorov, A. (1998) On Tables of Random
Numbers. Theoretical Computer Science
207(2), 387–395.

[21] Solomonoff, R., (1964). A Formal Theory of
Inductive Inference Part I. Information and
Control 7(1): 1–22.

[22] Gottschlich, J., Solar-Lezama, A., Tatbul, N.,
Carbin, M., Rinard, M., Barzilay, R.,
Amarasinghe, S., Tenenbaum, J.B., Mattson,
T. (2018) The Three Pillars of Machine
Programming. arXiv:1803.07244 [cs.AI].

10

	Abstract
	1. Introduction
	2. Visual Programming
	Acknowledgements

