
Zoea

Version 1.0

Zoea Visual Examples

Zoea Visual Examples

Table of Contents
1. Introduction...3
2. Examples...3

2.1 Empty Program...3
2.2 Comments...4
2.3 Variables...5
2.4 Hello World..6
2.5 Reverse String...7
2.6 String Case..8
2.7 String Concatenation...9
2.8 Strip Whitespace From A String...10
2.9 Character Codes..11
2.10 A plus B..12
2.11 Increment a Numerical String...13
2.12 Sum and Product...14
2.13 Roman Numerals..15
2.14 Even or Odd..16
2.15 Array Length...17
2.16 Sort an Integer Array...18
2.17 Remove Duplicate Elements...19
2.18 Letter Frequency...20
2.19 Tokenise a string...21
2.20 Maximum Element in a List..22
2.21 Median..23
2.22 Numeric..24
2.23 Palindrome..25
2.24 Rot-13...26
2.25 HTTP..27
2.26 Sparkline...28
2.27 MAC Vendor Lookup...29
Acknowledgements...30
References..30

Copyright © Zoea Ltd. 2020 2

Zoea Visual Examples

1. Introduction
Zoea is a simple declarative programming language based on the concept of inductive programming. Instead of

writing code in the conventional sense the Zoea developer describes the behaviour of a program as a set of
example scenarios consisting of inputs, derived values and outputs. As a result Zoea programs resemble a set of

functional test cases. The Zoea compiler uses AI to turn these test cases into executable code. Zoea programs can
also be combined to form larger programs of any size.

Zoea Visual is a visual programming language. A visual language allows a user to produce software using a
graphical notation - typically diagrams - instead of writing code. Zoea Visual is built on top of the Zoea language

and being visual it is easier to learn and use. It is also more powerful as it extends Zoea with a number of new
features including data flow dependencies and subsidiary test cases. As a result Zoea Visual can be used to build

larger programs quickly and easily. Visit https://zoea.co.uk/ for more information on the Zoea and Zoea Visual
languages.

This document presents a set of simple example programs in the Zoea Visual programming language. The tasks
that the examples implement mainly come from the Rosetta Code web site [1]. In some cases the tasks and/or

task descriptions have been modified slightly to make them easier to understand. Each task is briefly described
and a complete Zoea Visual code solution is provided. A discussion of the approach and implementation details

is also included.

2. Examples

2.1 Empty Program
Task

Create the simplest possible program that is still syntactically correct.

Solution

Discussion

This is a valid Zoea Visual program that has no input and no output. It does however have a case comment

indicating that it does nothing.

All of the examples in this document were produced using the Zoea Visual editor [2] and are the listing view of

their respective programs. The listing view is similar to the Zoea Visual cases screen but does not include any of
the menus or buttons. It also has a slightly different layout.

Copyright © Zoea Ltd. 2020 3

https://zoea.co.uk/

Zoea Visual Examples

2.2 Comments
Task

Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter.

Solution

Discussion

A comment can be provided for each case in the comment field on the case editor screen. This is displayed

beside the case number on the listing view. In addition any number of comments can be included in any column.
In Zoea Visual comments are represented by a box with a dashed border. Single and multi-line comments use the

same component. Comments can include any amount of text and the comment box grows and shrinks
automatically to fit its content. Comments larger than 50% of screen height will however require scrolling.

Copyright © Zoea Ltd. 2020 4

Zoea Visual Examples

2.3 Variables
Task

Demonstrate a language's methods of variable declaration, initialization, assignment, data types, scope,

referencing and other variable related facilities.

Solution

Discussion

There are no variables of any kind in Zoea or Zoea Visual. This complete avoidance of variables was deliberate.

Much of the complexity associated with learning and using conventional programming languages comes from
the need to name, remember and manage state. For example, when a developer uses another language to write a

program they need to keep in mind the values of all variables at every point in the program. In effect they need to
have a mental virtual machine that can execute their program and also store and access the results as they change

during execution. With Zoea Visual the internal state of the program data is always completely visible.

There were times during the development of Zoea where it would have been easier from a language

implementation point of view to allow at least some variables but this was considered to be a slippery slope. The
simplicity of Zoea is more a result of what is not included rather than that which is. Also, the primary focus of

the language is the value of immutable static data elements rather than the identity of the containers in which
data is stored.

Copyright © Zoea Ltd. 2020 5

Zoea Visual Examples

2.4 Hello World
Task

Display the string "Hello world!" on a text console.

Solution

Discussion

Having no input or reference data in a program means there can be no derived values or corresponding

computation. As a result any output value will always be the same.

It would also be possible to add any number of additional output data elements. These would also simply be

output each time the program is run.

Copyright © Zoea Ltd. 2020 6

Zoea Visual Examples

2.5 Reverse String
Task

Take a string and reverse it. For example, "asdf" becomes "fdsa".

Solution

Discussion

This example has both an input and an output. The blue triangle connecting them is a dependency. This means
that the input value is used in some way to produce the output value. Dependencies are optional but should

always be included as they make the developer intention more explicit and also let the compiler operate much
more quickly. Larger Zoea Visual programs would take a long time to compile without dependencies.

As with all Zoea Visual programs it should be fairly obvious to a human reader what data transformation occurs
at each step. If this is not the case then it is a good idea either to add another derived value or to include a

comment.

Many other possible test cases could have been included. These include single character, empty string and

numeric inputs. Zoea Visual treats numbers and strings interchangeably. All numbers can be treated as strings
and any string that looks like a number can also act like one.

Copyright © Zoea Ltd. 2020 7

Zoea Visual Examples

2.6 String Case
Task

Convert a mixed case string to lower and upper case.

Solution

Discussion

Note that we have two different programs here rather than two test cases for the same program. Both of these

examples would also work with a single letter inputs and outputs but the use of multiple letters and mixed case
helps to avoid any potential doubt about what is intended.

Copyright © Zoea Ltd. 2020 8

Zoea Visual Examples

2.7 String Concatenation
Task

Concatenate two string variables.

Solution

Discussion

This program has two inputs and there are dependencies from each input to the output. This means that the

values of both inputs are somehow involved in producing the value of the output.

When we look at a Zoea Visual program we don't often start on the left and follow the arrows to the right. Instead

it is more useful to focus on one target element at a time together with all of its source dependencies. That way
we can consider the role that each of the source elements plays in creating the target value. When we understand

how one target value is produced we can move on to the next.

Note that the test case also inserts a space character between the concatenated strings. Zoea is able to determine

that this space doesn't come from any of the inputs so it creates an additional internal string value as part of the
generated program.

Any fixed text that is required in the output can simply be included in output data elements. It can also be
specified as a data column value and linked to the appropriate output using a dependency. Zoea Visual also has a

label data element that can be used to produce fixed output. Labels can occur in any column and are otherwise
ignored by the compiler.

Copyright © Zoea Ltd. 2020 9

Zoea Visual Examples

2.8 Strip White-space From A String
Task

Demonstrate how to strip leading and trailing white-space from a string.

Solution

Discussion

The input in this example has leading and trailing space characters while the output doesn't. Removing spaces in
this way is a fairly common activity in computer programs and most programming languages have a specific

function for this purpose. If the spaces in the input had been a different character such as 'x' then the intent of the
test case would be less obvious. We might have meant delete all the 'x's, delete the first and last character, return

the middle four characters or many other alternatives. In such cases we need to provide multiple test cases rather
than just one.

Copyright © Zoea Ltd. 2020 10

Zoea Visual Examples

2.9 Character Codes
Task

Given a character value in your language, print its ASCII code.

Solution

Discussion

To specify this program you have to know or find out what the ASCII code for at least one character is. It doesn't

make any functional difference which character is chosen but it is easier for the user to see the input if it is a non-
white-space character. It is not necessary to add any more test cases as there is no simpler way to get from 'a' to

'97'.

Copyright © Zoea Ltd. 2020 11

Zoea Visual Examples

2.10 A plus B
Task

Add two input integers and display the result.

Solution

Discussion

In order to choose the best test data for a numeric operation it is useful to understand how Zoea evaluates

potential solutions. The most important thing to remember is that Zoea will select the simplest solution from all
the candidates that it discovers. Often there can be many plausible solutions for a given numeric test case. For

example the test case [7,11] → 18 could correspond to any of the following solution candidates:

• input(1) + input(2);

• input(1) + 11;

• input(1) * 2.5714285714285716;

• input(2) + 7;

• input(2) * 1.6363636363636365;

• 25 – input(1);

• and so on.

In order to choose the simplest Zoea assigns each candidate solution a complexity score which is based on the
number of operators and operands the term. So input(1)+input(2) has a base complexity score of 3 – one each for

the two operands and one for the operator. This score is also weighted such that any additional constants in the
term will increase the score. For example, input(1)+11 still has a base complexity score of 3 but its weighted

complexity score is 4 as we add one for the integer constant (11). Floating point numbers also have a higher
weight than integers. So input(1)*2.5 would have a weighted complexity score of 5.

This approach reflects the heuristic that solutions composed from available inputs are preferable to those where
additional values have to be conjured up from nowhere. Also if we do have to introduce additional values then

the fewer required and the simpler they are the better. Solutions involving string operations are also evaluated in
a similar way.

Understanding this approach makes it easier to come up with suitable test case values. The only other thing we
need to watch out for are test cases with potentially ambiguous interpretations such as [2,2] → 4. With a single

test case this could just as well be 2+2 or 2*2 as the weighted complexity score does not rank operators.

Copyright © Zoea Ltd. 2020 12

Zoea Visual Examples

2.11 Increment a Numerical String
Task

Increment a numerical string.

Solution

Discussion

The problem is slightly (but not much) harder than the case where we add two numbers. This is because where

we add two numbers we already have all of the data required to form the solution. In this case we also have to
create an unknown value that was not provided as an input.

We have used two test cases in the solution. This task also works if just the first or second test cases are used
alone. Using one test case for a problem like this runs a slight risk of Zoea misinterpreting the transformation as

a string operation. For example case 1 in isolation could instead be interpreted as meaning replace the last
character in the input with '6'. This would only be a problem if the numeric solution was more complex than the

string operation which in this case it isn't.

Copyright © Zoea Ltd. 2020 13

Zoea Visual Examples

2.12 Sum and Product
Task

Compute the sum and product of an array of integers.

Solution

Discussion

So far we have only seen examples with single value inputs and outputs. This example uses a list as input and
also has two outputs. A Zoea Visual list is equivalent to a one dimensional array in other programming

languages. Notice that the size of the input list is different in the two test cases. This together with the fact that
we have used a three element list in case 2 reinforces idea that we are working on the entire list rather than

particular elements within it.

When we look at a Zoea Visual program with multiple output values such as this it is useful to think of it as

really being the equivalent of multiple superimposed sets of test cases. There is one set of test cases for the first
output value (input1 → 8; input2 → 9) and another set for the second output value (input1 → 15; input2 → 24).

In other words the code that produces the output for the real test cases is a composite of the code that produces
the first output and the code that produces the second output.

Copyright © Zoea Ltd. 2020 14

Zoea Visual Examples

2.13 Roman Numerals
Task

Convert decimal integers to Roman numerals and back again.

Solution

Discussion

Conversion of Roman numerals as well as a long list of other things are built into Zoea rather than relying on the
user or third party libraries to provide them. This is because we want to integrate what we could call 'general

knowledge' into the Zoea reasoning process. It would of course be possible for the user to build their own Roman
numeral conversion software using Zoea if they wanted to. However, Zoea is trying to move beyond the model

of where the user has to spell out everything for the computer. So if we see a Roman numeral in a date, address
or the name of a publication we expect to treat it like any other rendering of a number.

When Zoea sees Roman numerals or other things that it recognises in test cases, one of the things that it does is
create a new set of synthetic test cases where those objects are converted to their canonical representation.

Roman numerals are converted internally to decimal numbers. Zoea then tries to come up with a solution for the
synthetic test cases. This effectively means that Zoea can produce programs that include any form of numerical

operation using any combination of representations of numbers. The same principle also applies to strings and
their various representations and encodings.

Copyright © Zoea Ltd. 2020 15

Zoea Visual Examples

2.14 Even or Odd
Task

Test whether an integer is even or odd.

Solution

Discussion

This task is a simple example of a conditional statement. Zoea generates conditionals when it is unable to

identify a single solution that works across all test cases. When a test case is compiled Zoea identifies every
solution that works for that test case – we call that a case solution. Each case solution that is found is

immediately evaluated across all test cases to see if it works for them as well. In the end we have a list of case
solutions and for each case solution we have a list of test cases for which that solution is applicable. We then

create sets of case solutions where the applicable list for each set covers all of the test cases – we call these
solution sets. This starts with the case solutions with the largest applicable lists so we tend to generate the

smallest possible solution sets early in the process. If a single case solution covers all of the test cases then we
don't need a conditional. Otherwise we take the solution sets with the smallest number of case solutions and

determine what the conditions are for each case solution to be applicable. Basically this compares the input and
derived values of the relevant cases together with a set of functions that we call discriminators. These are

combined with standard logical operators to produce a set of conditional expression hypotheses. The simplest
combination of logical expressions is found by creating synthetic boolean test cases and using the same case

solution/solution set approach recursively. The simplest single solution that covers all of the synthetic cases is the
logical expression that we are looking for.

This task can also be solved with just the first three test cases. If only two cases were used then the conditional
would likely be expressed in terms of the literal input values (e.g. input==X or input<X) which are not what is

required.

Copyright © Zoea Ltd. 2020 16

Zoea Visual Examples

2.15 Array Length
Task

Determine the number of elements in an array.

Solution

Discussion

This is a simple problem and as there is no conditional logic it is easily solved with a single test case. As always

the selection of the test data is important. Numeric input values have been deliberately avoided so as to reduce
the risk of any mathematical derivation. We have also avoided input elements with a string length of three or

indeed the digit '3' as a substring. The input as small as possible which is always good practise with Zoea.

Copyright © Zoea Ltd. 2020 17

Zoea Visual Examples

2.16 Sort an Integer Array
Task

Sort an array (or list) of integers in ascending numerical order.

Solution

Discussion

Both the input and output elements in this example are lists. This means that the shape of the dependency is a

little different. Dependencies that target single values end in a point whereas those that target composite elements
(lists, tables, table rows and objects) cover the complete left hand side of the target. This makes it more obvious

for the viewer that the result is a composite rather than a single value.

The choice of the order of the input list values is also significant. If instead the input had been [4,3,2,1] then the

operation would be recognised as reverse rather than sort. Zoea can also determine complicated multi-column
sort orders on tables as well as selection and filtering criteria if required.

Copyright © Zoea Ltd. 2020 18

Zoea Visual Examples

2.17 Remove Duplicate Elements
Task

Given an Array, derive a sequence of elements in which all duplicates are removed.

Solution

Discussion

The test case has been formulated to reflect the problem where duplicates can occur anywhere later in the list
rather than simply runs of repeated elements. Note also that the output numbers are in the same order as they first

occur in the input – they only happen to be in sorted order.

This example would also work if the numbers were represented in other formats such as unary or Morse code, or

if alphabetic strings were used.

Copyright © Zoea Ltd. 2020 19

Zoea Visual Examples

2.18 Letter Frequency
Task

Count the occurrences of each letter in a string.

Solution

Discussion

This example demonstrates that derive steps can and often do correspond to multiple code operations. To

produce the table the input string is split into characters, the number of occurrences of each character is counted
and the table is also sorted by the first column. There is no absolute limit to the number of code instructions that

can correspond to a single step but a larger number of operations will require more time and resources. It is also
harder for anyone looking at the program to figure out what is going on.

This program would also work without the derive step and also without any of the 'c' values.

The Rosetta Code description of this task talks about opening a text file. File access in Zoea is currently

supported as URLs (see the HTTP example). More sophisticated file and database facilities are on the Zoea
development roadmap.

Copyright © Zoea Ltd. 2020 20

Zoea Visual Examples

2.19 Tokenise a string
Task

Separate the string "Hello,How,Are,You,Today" by commas into an array (or list) so that each element of it

stores a different word. Display the words to the 'user', in the simplest manner possible, separated by a period. To
simplify, you may display a trailing period.

Solution

Discussion

Taken together the input and derive resemble the split problem although in this case the delimiter is a comma.

Similarly the derive and the output steps constitute a join operation with a period delimiter. This approach of
problem decomposition is similar to how the Zoea Visual compiler works at the coarsest level.

Strictly speaking we wouldn't need the derive step if we were happy for Zoea to produce an equivalent program
that produced identical results but didn't work internally as described. Without the derive step the result would

instead be a program that substitutes comma characters with periods. It so happens that for every distinct
program we can define there are a very large number of equivalent programs that produce exactly the same

results. We can provide additional derive steps if we are fussy about how the results are produced internally or
we can just accept the smallest and simplest of these as a good enough solution.

The solution does not include a trailing period however it would be trivial to add one.

Copyright © Zoea Ltd. 2020 21

Zoea Visual Examples

2.20 Maximum Element in a List
Task

Return the maximum value from a list of integers.

Solution

Discussion

A single test case where the output is a value returned from a list can correspond to many possible solutions.

Without any additional processing these include returning the first, last or nth element. If instead we base
element selection on some transformation of the list elements then the possibilities are literally endless.

When we select values for the test cases we need to ensure that we are not inadvertently specifying a different
program. This is why in this example the returned values are not both the 4th element of the input.

Copyright © Zoea Ltd. 2020 22

Zoea Visual Examples

2.21 Median
Task

Calculate the median value of a list of floating point numbers.

Solution

Discussion

The median value is calculated by first sorting a list of numbers and retaining any duplicates. If the length of the

list is odd then the median is the middle value from the sorted list. Otherwise if the length of the list is even then
the median is the average of the middle two elements in the sorted list.

One obvious thing about the solution is that there isn't a floating point number anywhere in the input. This is
deliberate. It is often possible to make the task of producing test data easier without impacting the quality of the

solution in any way. In this case the solution produced by Zoea Visual will work for integer inputs and also for
floating point inputs or any mixture thereof. Using integers as we have done here allows us to calculate the

average value required in the second test case using mental arithmetic. Other problems like average can also be
made easier by having for example ten elements in the input.

The solution for this problem includes a conditional statement. Zoea is able to identify the processing required
for each of the cases but there is no single solution that will work for both of them. In this case the simplest

possible condition is correctly identified as input length being odd or even.

Copyright © Zoea Ltd. 2020 23

Zoea Visual Examples

2.22 Numeric
Task

Create a boolean function which takes in a string and determines whether it is a numeric string (floating point

and negative numbers included).

Solution

Discussion

This is a pretty straightforward enumeration of a set of positive and negative examples. It would be possible to

have omitted some of the negative cases in order to speed up compilation but this is sometimes a false economy.
It is always a good idea to verify the generated solution by tuning it manually with additional test cases. We

know that any cases included in the Zoea Visual program will always operate correctly with the generated
solution so it's often easier in the long run to specify a program as completely as possible. Producing good test

cases is a large part of the skill and effort involved in writing Zoea programs. As a result time spent thinking
about what cases and data are required will often produce a better result more quickly.

Copyright © Zoea Ltd. 2020 24

Zoea Visual Examples

2.23 Palindrome
Task

Write a function or program that checks whether a given sequence of characters is a palindrome.

Solution

Discussion

A palindrome is a string of one or more characters that is identical if reversed. This problem is a little more
complex than the numeric task as it involves a comparison of the input with a mapping of itself.

Zoea makes no distinction between functions and programs. Everything in Zoea is a program and every Zoea
program could be used as a function if required. At the most basic level test cases can be viewed as a form of

boolean function in the sense that they describe the behaviour of a single code path with or without an associated
conditional state that selects for that code path. Complete external programs can be integrated as additional

instructions through the 'use' tag. In Zoea Visual it is also possible to embed a hierarchy of subsidiary test cases
within a single program.

Copyright © Zoea Ltd. 2020 25

Zoea Visual Examples

2.24 Rot-13
Task

Implement a rot-13 function. The definition of the rot-13 function is to simply replace every letter of the ASCII
alphabet with the letter which is rotated 13 characters around the 26 letter alphabet from its normal cardinal

position (wrapping around from 'z' to 'a' as necessary).

Solution

Discussion

This program involves a mapping of the character codes of the input string to produce the output. We need to

specify different behaviour for two different ranges for both lowercase and uppercase characters (a..m and n..z).
The solution requires conditional logic and the determination of two unspecified quantities: 13 and -13.

Internally some of the knowledge sources that deal with various forms of mapping decompose input and output
elements to produce additional synthetic test cases based on the decomposed values. For example, one of the

many lines of reasoning explored with regard to case 1 is the set of synthetic cases 'a'→'n', 'b'→'o' and 'c'→'p'.
Knowledge sources that handle various kinds of arrays include similar strategies. This is one reason why we

often need fewer test cases for mapping problems as composite elements can effectively provide multiple
examples of the same logic.

Where we have behaviour associated with ranges of input values Zoea adopts a convention that the lowest value
of a range should be specified and the behaviour is assumed to be the same with increasing values until a

counterexample is provided. Also the behaviour of the lowest value continues with decreasing values in a similar
way. Ranges do not need to be enumerated exhaustively if a subset of examples can demonstrate a recognisable

pattern.

Copyright © Zoea Ltd. 2020 26

Zoea Visual Examples

2.25 HTTP
Task

Access and print a URL's content (the located resource) to the console.

Solution

Discussion

This task is a nice illustration of one of the fundamental principles of Zoea's design. The software development
knowledge that Zoea uses is distributed across a large number of cooperating experts. Each expert proceeds by

formulating a set of assumptions about the developer intention based on the test case features that it or one of its
peers identifies. Every one of those assumptions may be right but it also may be wrong. Zoea needs to be able to

cope with both scenarios.

When Zoea detects an object that looks like a URL in some data it is open to multiple possible interpretations. It

could for example just be a piece of data such as a string of text. Alternatively, it could be a reference to an
internet resource that needs to be fetched as part of the required solution. It is impossible for Zoea to know which

if any of these is correct so it tries all possible strategies. To keep things tidy every expert and each hypothesis
operates within a different scope. These are provided by a hierarchy of synthetic test cases that are either clones

or mutations of their parent test cases. Specific experts are responsible for mapping the results and solutions from
descendants at any depth back into their ancestors.

Copyright © Zoea Ltd. 2020 27

Zoea Visual Examples

2.26 Sparkline
Task

A sparkline is a graph of successive values laid out horizontally where the height of the line is proportional to the

values in succession. Use Unicode values U+2581 through U+2588 to create a program that takes a series of
numbers separated by one or more white-space or comma characters and generates a sparkline-type bar graph of

the values on a single line of output.

Solution

Discussion

The input field includes all of the examples of single and multiple delimiter combinations. The first derive value
is the result of splitting the input string into an array while retaining any consecutive duplicates. The second

derive step removes duplicates and the output string is a direct mapping from these values to the corresponding
Unicode characters. Note that multiple derive columns are merged in the listing view.

This is still not a complicated problem but it is interesting to compare the size and complexity of the Zoea Visual
solution to those in conventional languages. For example the python solution for this task on Rosetta Code is

around twenty lines of code and requires a reasonable basis in python or a similar language to understand. With
relatively little explanation the Zoea Visual example could be understood by almost anyone.

Copyright © Zoea Ltd. 2020 28

Zoea Visual Examples

2.27 MAC Vendor Lookup
Task

Interface with an API that exists on the internet and retrieve the device manufacturer based on a supplied MAC

address.

Solution

Discussion

In this solution we have defined the URL for the service as data so it can be changed in the future without having

to recompile the program. We could also have used a test URL and instead defined the real URL as runtime data.
See the Zoea Visual manual [2] for details on how to do this.

In this case the input MAC address is simply concatenated to the service URL to produce a request. Note that the
derive value is really a single line of text but it has been wrapped by the listing view. The output value in this

example is the whole of the HTTP response document. If instead an HTTP header value or just part of the
document was required then this could be described using additional derive steps.

Copyright © Zoea Ltd. 2020 29

Zoea Visual Examples

Acknowledgements
Most of the examples in this document either come from or are based on tasks from the Rosetta Code web site
[1]. Zoea is a trademark of Zoea Ltd. All other trademarks are the property of their respective owners. This

document is copyright Zoea Ltd 2020. All rights reserved. Visit https://zoea.co.uk/ for more information.

References
[1] Rosetta Code. Available at: https://rosettacode.org/

[2] Zoea Visual Manual. Available at: https://zoea.co.uk/language/documents.html

Copyright © Zoea Ltd. 2020 30

https://rosettacode.org/
https://zoea.co.uk/

	1. Introduction
	2. Examples
	2.1 Empty Program
	2.2 Comments
	2.3 Variables
	2.4 Hello World
	2.5 Reverse String
	2.6 String Case
	2.7 String Concatenation
	2.8 Strip White-space From A String
	2.9 Character Codes
	2.10 A plus B
	2.11 Increment a Numerical String
	2.12 Sum and Product
	2.13 Roman Numerals
	2.14 Even or Odd
	2.15 Array Length
	2.16 Sort an Integer Array
	2.17 Remove Duplicate Elements
	2.18 Letter Frequency
	2.19 Tokenise a string
	2.20 Maximum Element in a List
	2.21 Median
	2.22 Numeric
	2.23 Palindrome
	2.24 Rot-13
	2.25 HTTP
	2.26 Sparkline
	2.27 MAC Vendor Lookup
	Acknowledgements
	References

